

Building Performance Measurement CPD: Introduction to Measurement

Build Test Solutions Open Day 21st September 2023

Agenda

- What is Building Performance Measurement?
- Why is it important?
- What has it told us about buildings?
- What are the available technologies and methods?

"You can't manage what you don't measure"

Making Measurement Mainstream

What is building performance measurement?

- o On-site
- Physical measurements
- Typical metrics:
 - o Heat loss rate
 - o Airtightness
 - o U-values
- AKA: BPE, POE, Monitoring & Verification

What affects building performance?

What Makes up Thermal Performance

Excerpts from SAP:

3. Heat losses and heat loss parameter													
Element			a	Gross rea, m²	Opening m ²	s Net A,	area m²	U-value W/m²K	AxUW	/К к-\ kJ	/alue, /m².K	Ахк, kJ/K	
Window						31	.70 x	1.33	= 42.31				(27)
Door						2.	35 x	1.10	= 2.59				(26)
Door						1.	97 x	1.50	= 2.96				(26)
Ground floor						81	.25 x	0.15	= 12.03				(28a)
External wall						145	5.59 x	0.27	= 39.31				(29a)
Roof						2.	13 x	0.17	= 0.36				(30)
Roof						79	.12 x	0.11	= 8.70				(30)
Total area of ext	ernal eleme	ents ∑A, m²	!			344	.11						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(20	5)(30) + (32) =	108.25	(33)
Heat capacity $Cm = \sum (A \times \kappa)$ (28)(30) + (32) + (32a)(32e) = N/A							(34)						
Thermal mass parameter (TMP) in kJ/m ² K 151.00							(35)						
Thermal bridges: $\sum(L x \Psi)$ calculated using Appendix K 9.68							9.68	(36)					
Total fabric heat	loss									(33) + (36) =	117.93	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ventilation heat loss calculated monthly 0.33 x (25)m x (5)													
	74.11	73.81	73.51	72.10	71.83	70.60	70.60	70.38	71.08	71.83	72.37	72.92	(38)
Heat transfer coefficient, W/K (37)m + (38)m													
	192.04	191.73	191.43	190.02	189.76	188.53	188.53	188.30	189.00	189.76	190.29	190.85	
Average = $\sum (39)112/12 = 190.02$ (39)								(39)					
Heat loss parameter (HLD) $W/m^{2}K$ (39)m ÷ (4)													

Why is Thermal Performance Important?

 Determines heat loss... and therefore: kWhs, £s, CO₂e, EPC Rating

-0

Slide: 8

Why Measure Heat Loss?

Across 500+ homes:

- SAP heat loss predictions good... on average
- But only actually right for 42%!
- Differences of >50% are common

Why measure?

THE REAL

Google Earth

9 2020 Google 🛁

Why measure?

Why Measure Air Permeability?

BUILD TEST

SOLUTIONS

Why Measure U-Values?

Slide: 13

Improve Business as Usual by Replacing Assumptions with Measurements

3. Heat losses and heat loss parameter

Unexpected performance = unintended consequences

- Energy
- Thermal comfort
- Ventilation
- Damp and mould
- Quality control
- Noise

You can't manage what you don't measure

Why Measure? The Performance Gap?

Figure from: Gupta, R., Kotopouleas, A., 2018. Magnitude and extent of building fabric thermal performance gap in UK low energy housing. Available at: https://www.sciencedirect.com/science/article/pii/S0306261918304343#b0240.

Why Measure? The Performance Gap?

Figure from: Gupta, R., Kotopouleas, A., 2018. Magnitude and extent of building fabric thermal performance gap in UK low energy housing. Available at: https://www.sciencedirect.com/science/article/pii/S0306261918304343#b0240.

Why Doesn't Everybody Measure??

- Pandora's box?
- Old methods
 prohibitively expensive
 and invasive
- Scalable new methods
 becoming available

Measurement for the Right Reasons

Source: Jenny Love et al, UCL – Hitting the target and missing the point 140,000 tests

Why Measure?

- Performance of houses is variable and impossible to assess visually
- Current energy models aren't wrong, but inputs should be improved
- Measurement & surveying/energy models aren't competitors, need both
- Measurement allows better understanding of individual buildings
- Better retrofit planning & design
- Quality assurance and feedback

Setting Building Performance Targets

SMART

- o Specific
- o Measurable
- o Achievable
- o Relevant
- o Time-bound

Metrics:

- ✓ Heat Transfer Coefficient
- ✓ Air permeability
- Ventilation rate
- ✓ U-values
- o Energy Use
- CO₂e emissions
- o Fuel costs

Available tools

- Whole Building Heat Loss (HTC)
- Airtightness (Pulse/Blower Door)
- U-values (Heat3D/Heat Flux)
- Ventilation flow rates
- Mould and overheating risk (temp/RH sensors)
- Occupant surveys (qualitative)
- Thermography (qualitative)

Our Core Technologies

SmartHTC – Measured total building heat loss

Pulse – Air leakage rate @ 4Pa

Heat3D – Rapid U-value measurement of walls, floors, roofs

Whole building heat loss - SmartHTC

- Energy balance informed by measurements of energy consumption & internal temperature
- 3 weeks monitoring during winter
- Measures rate of heat loss per degree
- Directly comparable with design predictions
- o Size heat pumps

Additional metrics

- Mould Risk Indicator
 - Mould and condensation risk assessment
 - Live overall and individual room risk scores (0-100)
 - Assess portfolios of buildings and better target interventions e.g. fabric upgrade and/or ventilation

Airtightness

Measurement	Test	Rough Cost	Test Length	Unit	Typical Uses		
Airtightness	Pulse	£100-250	15 minutes	m ³ /m ² .h @4Pa or 50Pa Air movement (m ³)	 Building Regulations compliance Check ventilation 		
	Blower door fan		45 minutes	per surface area (m ²) per hour (h) @ a pressure difference (Pa)	heat loss - Check ventilation provision		

U-values

Measurement	Test	Rough Cost	Test Length	Unit	Typical Uses
U-value (elemental performance)	Heat flux plates	£1,000	1 week	W/m ² .K Rate of heat transfer (W) per surface area (m ²) per degree temperature difference between inside and out (K or °C)	 Check walls/roofs/floors work as expected Diagnose cause of performance gap
	Heat3D	£500	1-2 hours		

- 1. In-situ **measurement is really important** and yet often overlooked/deemed to complicated or expensive
- **2. Tools and techniques exist** today that make measurement more accessible and affordable than ever before.
- 3. What you don't measure, you can't manage!
- 4. This in turn presents **lots of opportunities** for practicing surveyors, services engineers, architects, consultants and contractors!....

Thank you

enquiries@buildtestsolutions.com

www.buildtestsolutions.com

@BuildTestUK

Slide: 30

Building Performance Measurement CPD: Policy and Regulations Build Test Solutions Open Day 21st September 2023

Agenda

o NOW

- Current policy and regulations
- Current voluntary standards
- o SOON
 - Upcoming policy and regulations
- FUTURE?

Performance Gap Research Spend

BPE in CURRENT policy, regulations and funding frameworks

- AD Part L New build airtightness testing. 100% of all new build homes
- PAS2035
 - 9.3.3 Pathway C pre and post retrofit airtightness test
 - Section 14 Monitoring and Evaluation
 - Annex C Background ventilation testing
- Planning Policy Milton Keynes, GLA, EHDC
- Social Housing Decarbonisation Fund Demonstrator (6 months monitoring), Wave 1 (SMETER), Wave 2 (Digitalisation)
- o Expert Witness e.g. CPR 35 Reports
- AD Part F ventilation inspections and commissioning
- AD Part O overheating modelling and in-use verification

BPE in CURRENT voluntary standards

- BS40101:2022 Preliminary, Lite, Standard and Investigative
- Passivhaus and Enerphit
- Full SAP EPCs U-values
- Energiesprong Performance Management Framework
- Soft Landings
- IPMVP International Performance Measurement and Verification Protocol
- LETI Climate Emergency Retrofit Guide
- AECB Carbon Lite
- BRE Home Quality Mark

Join the revolution!

BPE requirements on the near horizon...

- ECO4 Pay 4 Performance Expected 2024
- EPCs 2024-26 onward
 - Airtightness measurements into rdSAP
 - U-value measurements into SAP and rdSAP
 - HTC's into SAP11?
- MCS heat loss assessment requirements linking in with measured HTCs
- Future Homes Standard 2025/26 sample based as-built testing?

BPE in the future?

- Trustmark Data Warehouse / Property Passports populated with measured parameters
- Green Finance linked to measured impact
- Outcomes based building regulations
- Building Performance Insight algorithms more widely embedded in smart home technologies – IHD's, smart home hubs and thermostats etc.
 - Remote 'headline' assessment driving the market for further deeper dive diagnostics

- 1. In-situ measurement/BPE fast evolving from what was once a cottage industry into something much bigger
- **2. Regulation/policy direction is largely on our side** we're pushing against an open door
- 3. We're not advocating measurement for the sake of measurement, there's **real value** in delivering buildings that do what they say on the tin!
- 4. This in turn presents **lots of opportunities** for practicing surveyors, services engineers, architects, consultants and contractors!....

Thank you

enquiries@buildtestsolutions.com

www.buildtestsolutions.com

@BuildTestUK

Slide: 41

Building Performance Measurement CPD: Market Opportunities

Build Test Solutions Open Day 21st September 2023

Agenda

- Market perspective building owner/landlord
- Market perspective contractor/developer
- Market perspective professional advisors (surveyors, assessors, coordinators etc.)
- Case Studies

Why Measure - Building owner or landlord

- Better target and prioritise investment. Going beyond EPCs where is money best spent for maximum return on investment.
- **Deliver upon regulatory requirements.** Building regs, PAS2035 etc.
- Unlock funding. Funding pots dependent on measurement e.g. SHDF or better finance available where measurement can demonstrate impact delivered.
- **Right first time.** Check as built performance is in line with expectation. Quality assurance.
- **To provide a feedback loop into future projects.** What works well and not so well? Beyond customer satisfaction surveys!
- Stay ahead of the curve!

Use Case: Lancaster West Estate

- o £20m project, two SHDF rounds
- Shadow of Grenfell
- Pre and post retrofit testing across 00's of flats
- Pre results feeding into design teams and the RBKC asset management system
- Post retrofit results to check and validate delivered outcomes

Why Measure – Contractor or Developer

- Marketing/to differentiate from the competition. "we measure and verify the performance of what we build and handover"
- To instil customer trust, buy-in and confidence.
- **Right first time.** Internal routine quality control and assurance.
- Inform retrofit. What's the baseline you're dealing with and what's the best retrofit spec to deliver?
- To meet other obligations or requirements within the contract. BPE, POE, M&V etc.
- Unlock finance? ESG driven investing etc.
- **To provide a feedback loop into future projects.** What works well and not so well etc.

Use Case: New Build Developers

• Is it a risk or an opportunity?

- Showcase quality vs. managing quality and risk
- Informing Future Homes Standard 2025/26
- Design vs. As-built and its possible implications for heat pumps and DNO infrastructure and connection costs

Why Measure – Professional Advisors

- 1. Offer **compliance orientated measurement services** in line with PAS2035, ADL and ADF, BS 40101:2021, RIBA Plan of Work POE etc.
- 2. Access additional funding on projects e.g. SHDF Digitalisation
- 3. Help EPC orientated landlords override conservative/punitive assumptions
- 4. Measure peak heat demand to determine heat pump readiness
- **5. Validate performance of homes/products** e.g. post retrofit or as-built new builds under warranty. Expert witness services, research projects etc.
- 6. Offer value add measurement services to compliment your existing proposition e.g. Retrofit Assessment costs £X + heat loss + airtightness + U-value measurements. Single visit = efficiencies as well as a happier householder

Use Case: Sizing Heat Demand

- HTC give heat loss per degree temperature difference
- Multiplying HTC by design internal & minimum external temperature gives peak space heat demand

Use Case: Ventilation Guidance

- Cavity wall insulation & draft stripping
- **32% reduction** in air permeability
- Building air permeability >1ACH/h@4Pa
- o 1 room <1.5ACH/h@4Pa</p>
- 1 door undercut required

Use Case: Product Development & Validation

- Test and demonstrate new products in-situ
- Validate predicted savings

AIREX

Analysis Report

AirEx - ECO Demonstration Action

Circulation: OFGEM, TAP panel, BRE

1" draft submitted to OFGEM: 29/09/20 Final edits completed: 14/12/20

Authors: Dr Jo Fleming (Corrie Energy Partners), Tony Duffin (Duffin Associates), Luke Smith, Dr Richard Jacks & Richard England (Build Test Solutions), Agnes Czako (AirEx).

- 1. In-situ **measurement is really important** and yet often overlooked/deemed to complicated or expensive
- **2. Tools and techniques exist** today that make measurement more accessible and affordable than ever before.
- 3. What you don't measure, you can't manage!
- 4. This in turn presents **lots of opportunities** for the industry at large but especially professional advisors surveyors, services engineers, architects, assessors, consultants!....

Thank you

enquiries@buildtestsolutions.com

www.buildtestsolutions.com

@BuildTestUK

